
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713926090

Shape-dynamic growth, structure, and elasticity of homogeneously
oriented spherulites in an isotropic/smectic-A mesophase transition
Nasser Mohieddin Abukhdeira; Alejandro D. Reya

a Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada

First published on: 25 August 2009

To cite this Article Abukhdeir, Nasser Mohieddin and Rey, Alejandro D.(2009) 'Shape-dynamic growth, structure, and
elasticity of homogeneously oriented spherulites in an isotropic/smectic-A mesophase transition', Liquid Crystals, 36: 10,
1125 — 1137, First published on: 25 August 2009 (iFirst)
To link to this Article: DOI: 10.1080/02678290902878754
URL: http://dx.doi.org/10.1080/02678290902878754

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713926090
http://dx.doi.org/10.1080/02678290902878754
http://www.informaworld.com/terms-and-conditions-of-access.pdf


INVITED ARTICLE

Shape-dynamic growth, structure, and elasticity of homogeneously oriented spherulites in an
isotropic/smectic-A mesophase transition

Nasser Mohieddin Abukhdeir* and Alejandro D. Rey

Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, Canada

(Received 9 February 2009; final form 9 March 2008)

A Landau-de Gennes model that integrates the nematic quadrupolar tensor order parameter and complex smectic-
A order parameters is used to simulate the two-dimensional growth of an initially homogeneous smectic-A
spherulite in an isotropic matrix. These simulations are performed in the shape-dynamic (nano-scale) regime of
growth under two material conditions: isotropic nematic elasticity and equal splay-bend nematic elasticity.
A comparison of the growth kinetics, spherulite morphology, and interfacial/bulk energy landscapes between
both cases is made showing that equal nematic splay–bend elasticity is required to reproduce past experimental and
theoretical observations. In addition, a previously unknown undulation instability during spherulite growth is
found which, in conjunction with preferred planar anchoring and defect shedding mechanisms at micrometer
length scales, could explain the formation mechanism of focal conic curvature defects and ultimately smectic-A
‘batonnet’ structures observed experimentally.

Keywords: smectic-A; phase transition; growth; morphology; kinetics; dynamics

1. Introduction

The study of liquid crystalline materials has had a

rapid and profound technological impact on civilisa-

tion in the past century. In the overarching field of soft

matter, the study of liquid crystals has contributed

fundamental advances in technological areas such as

display technology and high-performance materials.

In addition, interest is quickly emerging in an area in
which the understanding of liquid crystals is being

recognised as crucial: biological systems (1), and nat-

ure as a whole. Self-organisation is the basis on which

all biological systems have developed and evolved, and

the presence of liquid crystal phases in the very build-

ing blocks of nature, the cell’s phospholipid bilayer, is

self-evident (1,2). As our understanding of biological

systems increases, more and more instances of liquid
crystal phases are found (3): in muscle tissue (4), the

development of bone (2), and even in the beginnings of

life itself (5).

Over the course of almost four decades, the vast

contributions of P. G. de Gennes to the area of liquid

crystals have enabled the advancement of knowledge up

to this point. One of these contributions was his theore-

tical work on the smectic-A mesophase. His discovery,
simultaneously with McMillan, of the analogy between

superconductors and smectic-A phase ordering has

opened up an avenue for the study of this mesophase

via modelling and simulation. The key role that this

mesophase plays in biological systems alone shows the

importance of this single contribution of de Gennes. In

his Nobel lecture in 1991, he states that ‘smectics bring
me naturally to another important feature of complex

fluids---namely that, in our days, it is sometimes possible

to create new forms of matter’, which alludes to the types

of applications of smectics that could be developed in the

future and to their roles in biological systems.

The most simple of the smectics is the smectic-A

mesophase, which displays lamellar translational order-

ing, in addition to the orientational ordering of nematics.
Recently an increasing amount of interest in this meso-

phase, in particular of materials exhibiting a direct iso-

tropic/smectic-A (disordered/ordered) transition, has

resulted in many experimental and theoretical results.

Nonetheless, the understanding of this mesophase is in a

nascent stage. Much of this is due to the time and length

scales at which the structures and dynamics occur being

on the nano-scale. These properties provide a obvious
application of theoretical study through modelling and

simulation in order to both enhance experimental

research and make predictions independently.

A fascinating range of liquid crystal growth

morphologies have been the focus of much study (6).

The smectic-A mesophase, with its lamellar ordering on

the molecular scale, exhibits growth, defect and texture

phenomena not seen in the nematic phases, including
the lamellar-like cholesteric mesophase. Focusing

solely on the growth phenomena, on transition from

the isotropic/disordered phase, the formation of a
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variety of self-assembled smectic-A structures has been

observed. These unique morphologies can be attributed

to complex dynamics involving interfacial tension ani-

sotropy, which results in preferred anchoring, and bulk

texturing.

The current study is part of an overall effort to

understand kinetics, dynamics and the morphology of
the direct isotropic/smectic-A liquid crystalline phase

transition. The theoretical focal point of this research

is a high-order Landau-de Gennes-type phenomeno-

logical model of Mukherjee, Pleiner and Brand (7, 8).

This high-order model incorporates much of the key

physics involved in the direct isotropic/smectic-A tran-

sition which occur on multiple scales and involve mul-

tiple types of phase-ordering: orientational and
translational. In this effort a comprehensive approach

has been developed for the determination of phenom-

enological parameters for the model and efficient

phase diagram computation (9). Following this,

numerical simulation was used to study phase transi-

tion kinetics and defect dynamics (10), surface effects

(11) and, most recently spherulite growth (12). In

addition to these simulation studies, theoretical con-
tributions have been made to the study of smectic-A

filamentary growth and buckling (13, 14).

Past work on smectic-A spherulite growth has

focused on initially radially oriented nuclei (12). The

current work studies an alternate initial configuration

where the nucleus is homogeneously, or ‘ideally’,

oriented. This and past work (10–12, 14) focuses on

rod-like low molecular mass liquid crystals and phe-
nomenological parameters are based, in part, on

experimental data from 12CB (dodecyl-cyanobiphe-

nyl). This work neglects nucleation mechanisms, ther-

mal fluctuations, heat of transition, impurities and

convective flow while taking into account energeti-

cally the inter-coupling between orientational/transla-

tional order and the variation of smectic layer spacing.

The objectives of this simulation study are to:

(1) determine the dynamic growth morphology of

an initially homogeneous smectic spherulite with

no preferred anchoring at the isotropic/smectic-
A interface (isotropic nematic elasticity);

(2) determine the dynamic growth morphology of

an initially homogeneous smectic spherulite

with preferred planar anchoring (as is

observed experimentally) at the isotropic/

smectic-A interface (equal bend-splay nematic

elasticity); and

(3) compare these simulation predictions with sim-
plified shape equation models.

The paper begins with a brief background on liquid

crystals and phase-ordering transitions. The model is

then presented and the details of the simulation

method/conditions are given. A brief discussion of

the connection between two- and three-dimensional

simulation is then given using a less-complex example

of initially homogeneous spherulite growth in the iso-

tropic/nematic transition. Finally, results of the work

are presented and conclusions made.

2. Background

2.1 The first-order isotropic/smectic-A transition

This work focuses on the study of rod-like thermo-

tropic liquid crystals which exhibit a first-order

isotropic/smectic-A mesophase transition. An unor-

dered liquid, where there is neither orientational nor
translational order (apart from an average intermole-

cular separation distance) of the molecules, is referred

to as isotropic. Liquid crystalline order involves partial

orientational order (nematics) and, in addition, partial

translational order (smectics and columnar meso-

phases). The simplest of the smectics is the smectic-A

mesophase, which exhibits one-dimensional transla-

tional order in the direction of the preferred molecular
orientational axis, which can be thought of as layers of

two-dimensional fluids stacked upon each other. Other

more complex types of smectics exist, for example

tilted smectic/smectic-C and hexatic smectic/smectic-B

mesophases. In this context, the relative simplicity of

the smectic-A mesophase makes it the ideal starting

point and, subsequently, a template phase for the vast

set of self-assembled lamellar systems (15). Schematic
representations of these different types of ordering are

shown in Figure 1.

Owing to the first-order nature of the isotropic/

smectic-A transition, a coexistence temperature inter-

val exists where both the isotropic and smectic-A

phase are either stable or metastable. The phase dia-

gram computation method for the model used in this

work was developed previously (9) and the resulting
phase diagram for the phenomenological system used

in this work is presented in Figure 2.

Figure 1. Schematics of the (a) isotropic, (b) nematic, and
(c) smectic-A phases.
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3. Modelling and simulation

3.1 The Landau–de Gennes model

The theoretical characterisation of mesophase order is

accomplished using order paarameters that ade-

quately capture the physics involved. These order

parameters typically have an amplitude and phase

associated with them. In order to characterise the

partial orientational order of the nematic phase, a

second-order symmetric traceles tensor can used (7):

Q ¼ S nn� 1

3
d

� �
þ 1

3
Pðmm� llÞ ð1Þ

where n/m/l are the eigenvectors of Q, which charac-

terise the average molecular orientational axes, and

S/P are scalars which characterise the extent to which
the molecules conform to the average orientational

axes (6, 17, 18). Uniaxial order is characterised by S

and n, which correspond to the maximum eigenvalue

(and its corresponding eigenvector) of Q, S ¼ 3
2
�n.

Biaxial order is characterised by P and m/l, which

correspond to the lesser eigenvalues and eigenvectors,

P ¼ 3
2
ð�m � �lÞ.

The smectic-A mesophase has one-dimensional
translation order in addition to the orientational

order found in nematics. Characterising this meso-

hase can be accompished through the use of primary

(orientational) and secondary (translational) order

parameters together (19). A complex order para-

meter can be used to characterise translational

order (7):

� ¼  ei� ð2Þ

where � is the phase,  is the scalar amplitude of the

density modulation. The density wave vector, which

describes the average orientation of the smectic-A

density modulation, is defined as a ¼ ��=j��j . The

smectic scalar order parameter  characterises the

magnitude of the density modulation, and is used in

a dimensionless form in this work. In the smectic-A
mesophase the preferred orientation of the wave vec-

tor is parallel to the average molecular orientational

axis, n.

A Landau–de Gennes-type model for the first-

order isotropic/smectic-A phase transition is used

that was initially presented by Mukherjee, Pleiner,

and Brand (7, 8) and later extended by adding nematic

elastic terms (20–22):

f � f0 ¼
1

2
aðQ : QÞ � 1

3
bðQ �QÞ : Q þ 1

4
cðQ : QÞ2

þ 1

2
�j�j2 þ 1

4
�j�j4 � 1

2
�j�j2ðQ : QÞ

� 1

2
eQ : ð��Þð���Þ þ 1

2
l1ð�QÞ2

þ 1

2
l2ð� �QÞ2 þ

1

2
l3Q : ð�Q : �QÞ

þ 1

2
b1j��j2 þ 1

4
b2j�2�j2 ð3Þ

a ¼ a0ðT � TNI Þ

� ¼ �0ðT � TAI Þ

where f is the free energy density, f0 is the free

energy density of the isotropic phase, terms 1–5

are the bulk contributions to the free energy,
terms 6 and 7 are couplings of nematic and smectic

order; both the bulk order coupling of the nematic

director and smectic density-wave vector, respec-

tively. Terms 8–10 and 11–12, are the nematic and

smectic elastic contributions to the free energy,

respectively. Here T is temperature, TNI/TAI are the

hypothetical second-order transition temperatures

for isotropic/nematic and isotropic/smectic-A meso-
phase transitions (refer to (16) for more details),

and the remaining constants are phenomenological

parameters.

The Landau–Ginzburg time-dependent formula-

tion (23) is used to capture the dynamics of the

phase transition. In order to utilise standard numer-

ical solution techniques, the complex order para-

meter Equation (2) is separated into its real and
imaginary contributions (24):

� ¼ Aþ Bi ð4Þ

Figure 2. Computed phase diagram for 12CB (9) with
nematic scalar order parameter (solid line), smectic scalar
order parameter (dotted line), and the layer spacing (stippled
line). The isotropic/smectic-A coexistence region is enclosed
by the vertical dashed lines, indicating the temperature range
over which the isotropic/smectic-A phases coexist in stable/
meta-stable states (9, 16).
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The general form of the time-dependent formulation

is as follows (23):

@Q
@t
@A
@t
@B
@t

0
B@

1
CA ¼

1
�n

0 0

0 1
�s

0

0 0 1
�s

0
B@

1
CA
� �F

�Q

� �F
�A

� �F
�B

0
B@

1
CA ð5Þ

F ¼
Z

V

f dV ð6Þ

where �n/�s is the rotational/smectic viscosity, and

V the volume. A higher-order functional derivative

must be used owing to the second-derivative term in

the free energy Equation (3):

�F

��
¼ @f

@�
� @

@xi

@f

@ð@�=@xiÞ

� �

þ @

@xi

@

@xj

@f

@ð@2�=@xi@xjÞ

� �
ð7Þ

where � corresponds to the order parameter.

Substituting Equation (4), the free energy (3), and

high-order functional derivative (7) into the time-

dependent formulation (6) yields the closed set of

model equations:

@Q

@t
¼ � a�Q � b�ðQ �QÞST þ c�ðQ : QÞQ

h

���ðA2 þ B2ÞQ � 1

2
e�ð�A�A

þ�B�BÞST
i
þ � � ðl�l �QÞ

��
@A

@t
¼ �½��Aþ ��ðA2 þ B2ÞA� ��AðQ : QÞ�

þ � � b�1�A� e�Q � �A� 1

2
b�2�ð�2AÞ

� �

��
@B

@t
¼ �½��Bþ ��ðA2 þ B2ÞB� ��BðQ : QÞ�

þ � � b�1�B� e�Q � �B� 1

2
b�2�ð�2BÞ

� �

ð8Þ

where the asterisk denotes a non-dimensionalised

value, the superscript ST denotes the symmetric/

traceless portion of a tensor, and �* is the ratio

of the smectic and rotational viscosities. The

non-dimensionalised model parameters are as
follows:

a� ¼ a0
�T

�0
b� ¼ b

�0�T
c� ¼ c

�0�T

�� ¼ �T � 1 �� ¼ �

�0�T
�� ¼ �

�0�T

b�1 ¼
b1

l2�0�T
b�2 ¼

b2

l4�0�T
e� ¼ e

l2�0�T

l�1 ¼
l1

l2�0�T
�� ¼ �s

�n

� ¼ �n

�0�T

�T ¼ T � Tni

�T
�T ¼ TAI � TNI

ð9Þ

where l is the simulation-specific imposed length scale.

3.2 Simulation method and conditions

A square computational domain with an imposed
length scale of l = 2.93 · 10-1 �m (aproximately 75

smectic layers at 330 K (see (25) and Figure 2)) was

used in two separate simulations with isotropic

nematic elasticity (no preferred interfacial anchoring

l1 . 0, l2, l3 = 0) and equal bend/splay nematic elasti-

city (preferred planar interfacial anchoring l1, l2 . 0,

l3 = 0). Referring to Figure 3, Neumann boundary

conditions were used to simulate bulk conditions.
The initial condition for both simulations was a smec-

tic-A spherulite in an initially homogeneous layer con-

figuration (see Figure 3). The radius of the spherulties

Figure 3. Surface plot of Re(�) over the computational
domain with the initial spherulite condition indicated by a
stippled circular region (assumed homogeneously oriented
smectic-A nucleus). White/black corresponds to the
maximum/minimum of Re(�) and the imposed length
scale is l = 2.93 · 10-1 �m. The material parameters and
phenomenological coefficients, based upon 12CB, are TNI

= 322.85 K, TAI = 330.5 K, �0 = 2 · 105 J m-3 K-1, b = 2.823
· 107 J m-3, c = 1.972 · 107 J m-3, �0 = 1.903 · 106 J m-3 K-1,
� = 3.956 · 108 J m-3, � = 9.792 · 106 J m-3, e = 1.938 · 10-11

pN, l1 = 1· 10-12 pN, l2 = 1.033 · 1012 pN, b1 = 1 · 10-12 pN,
b2 = 3.334 · 10-30 J m, �N = 8.4 · 10-2 N · s m-2, and the
ratio of the rotational and diffusional viscosities used was
�S/�N = 25.
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was initially set to r0 = 4.0 nm. The initial value used

for S,  , and the layer spacing correspond to the

homogeneous values at T = 330 K, determined from

the computed phase diagram (Figure 2). The

Heaviside step function was used to generate the initial

spherulite. The constraint that the spherulite does not

impinge on the domain boundaries was verified post-
simulation.

A commercial package, Comsol Multiphysics, was

used to solve the time dependent model (8). Quadratic

Lagrange basis functions were used for the Q-tensor

variables and quartic Hermite basis functions used for

the complex order parameter components. Standard

numerical techniques were utilised to ensure conver-

gence and stability of the solution. This platform does
not support adaptive mesh refinement, thus a uniform

mesh was used with a density of approximately 14.8

nodes per nm2. Previous simulations using this model

and numerical method have shown good agreement

with both past experimental and theoretical findings

(10, 11). In addition, exhaustive past work using this

numerical method and the Landau-de Gennes model

for the first-order isotropic/nematic phase transition
(26–29) has served to further validate this simulation

approach.

3.3 Multidimensional computation

Two fundamental challenges to research utilising

numerical simulation are computational limitations

and the functionality of numerical routines. As a result
of the first challenge, the vast majority of simulation

studies in the field of liquid crystals have been limited

to one and two dimensions. This is the case for the

current study as well, but the symmetries and simila-

rities between full three-dimensional simulation and

two-dimensional simulation (of three-dimensional

phenomena) provide a strong motivation for and uti-

lity of obtaining these two-dimensional solutions. A
specific justification for this relationship can be found

by comparing past simulation results of a growing

nematic spherulite in two dimensions (26–29) with

results of the same system (model, parameters and

initial conditions) in three dimensions. Figure 4

shows the results of three-dimensional simulation of

the growth of an initially homogeneous nematic spher-

ulite based on two-dimensional studies by Wincure
and Rey (26–29). Figures 4(a)–(c) show three ortho-

gonal views of an initially homogeneous nematic

spherulite where the spherulite morphology in the y/

z-plane (Figure 4(a)) shows qualitative similarities to

past two-dimensional results (6, 26). Both the two-

dimensional and three-dimensional initial conditions

share symmetries in one orthogonal plane, thus the

two-dimensional solution is qualitatively a subset of

the three-dimensional result. Based on this result, the

two-dimensional smectic-A spherulite computations

presented later are also expected to contain significa-

tion features found in three-dimensional structures.

4. Results and discussion

Two different general types of post-nucleation growth

are observed in the growth processes of liquid crystals.

The shape-dynamic regime of growth from an initial
nucleus, dominated by bulk elastic energy, involves

shape and texturing dynamics as interfacial anchoring

effects become important when the spherulite radius

surpasses the characteristic length of liquid crystal

ordering. This shape-dynamics regime of growth tran-

sitions from the initial nucleus texture to a spherulite

with shape and texture that minimises the overall free

energy, allowing for constant growth to proceed. Once
this transition is complete, a self-similar growth

regime is observed where spherulite texture and

shape are independent of length scale and spherulite

dimension scales with time r/ tn. For the liquid crystal

5CB (pentyl-cyanobiphenyl), which exhibits an isotro-

pic/nematic transition, the self-similar growth regimes

for initially homogeneous spherulites were found to

range from time scales of approximately 80 �s and
length scales of approximately 1.5 �m depending on

temperature quench depth (27, 28).

Past work focused on an initially radially oriented

nucleus (12), where the initial nucleus shape has

(a) (b) (c)

(d)

Figure 4. Results of the growth of an initially homogenous
nematic spherulite in an isotropic matrix in three-
dimensional simulation where the isosurface corresponds
to S = 0.18 and the surface shading corresponds to the
biaxial order parameter P (minimum/maximum 0/0.07, see
the colour bar): (a) y/z-plane; (b) x/y-plane; (c) x/z-plane; (d)
colour bar for (a)–(c). The phenomenological parameters
were � = 0.084 N · s m-2, TNI = 307.2 K, a0 = 1.4 · 105

J m-3 K-1, b = 1.8 · 107 J m-3, c = 3.6 · 106 J m-3, l1 = 3.0 ·
10-12 J m-1, l2 = 3.1 · 10-12 J m-1, l3 = 0.0 · 10-12 J m-1 (see
(26)); the horizontal length scale is 225 nm, and a C++ finite
element library, LibMesh 0.63 (30), was used to develop the
fully adaptive parallelised finite-element code.
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homogeneous interface conditions and the self-similar

growth transition involves spherulite core dynamics

only. A homogeneously oriented nucleus has interfa-

cial heterogeneities which result in bulk texture

dynamics minimising total free energy, depending on

the existence of preferred anchoring at the isotropic/

smectic-A interface. This results in a prolonged shape-
dynamic growth regime which has been found to

involve defect shedding in nematic cases (28). The

complex smectic ‘batonnet’ structures composed of

curvature defects first observed by Friedel and

Grandjean (31) (see also (32, 33)) have been attributed

to growth from initially homogeneous smectic-A

nuclei (34). Past approaches to studying these types

of growth processes have involved highly simplified
shape equations that take into account approxima-

tions of anisotropic interfacial anchoring energy and

bulk energy contributions. The simplest approach is

that of the Wulf construction (35) which determines

surface shape by minimising the sum of total interfa-

cial energy and an ideal undistorted bulk contribution:

F ¼
Z

A

	ðrÞdAþ �V ð10Þ

where F is the total free energy of the spherulite, 	 is

the interfacial tension (a function of position r), and �
the free energy density of the spherulite bulk. While

this approximation is suitable for crystal growth

where a homogeneous bulk texture is a valid assump-

tion, in the case of liquid crystals the occurrence

of bulk elastic distortions and complexity of

interfacial anchoring energies requires more rigorous
approaches. However, the Wulf approximation is a

convenient starting point for the analysis of the first

simulation case with isotropic nematic elasticity. In

the absence of smectic-A ordering, the nematic con-

tribution to the interfacial energy, neglecting curva-

ture and biaxiality, is (36):

	 ¼
b3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3l1 þ l2=2þ 3l2ðn � kÞ2=2

q
486c5=3

ð11Þ

where k is the unit vector normal to the interface.

Equation 11 shows that in the case of nematic elastic
isotropy (l2 = l3 = 0), the nematic contribution to the

interfacial tension is approximately isotropic and there

is no preferred interfacial anchoring of the nematic

director. Based upon this premise, the Wulf construc-

tion prediction for this situation should be valid in that

interface anchoring conditions do not frustrate the

bulk. Figure 5(a) shows the layer morphology of this

scenario where a spherulite grows with a homogeneous
texture and perfectly circular scale-independent shape.

Figure 5(b) and (c) show simulation results of the

long axis and its power-law fit versus time for the

isotropic nematic elastic case. These results indicate

that a transition from shape-dynamic to self-similar

growth occurs on the order of 1 �s after nucleation.

These results are in agreement with past work on

initially textured smectic-A spherulite growth (12)
where in both cases the bulk elasticity is dominant

over interfacial energy. As mentioned previously,

similar studies of nematic spherulite growth show

that the transition from shape-dynamic to self-similar

regimes occurs on a time scale of the order of 80 �s (see

(37)) owing to the relatively lower magnitude of bulk

(a) (b) (c)

Figure 5. (a) Schematic of the Wulf construction result for the shape of a growing smectic-A spherulite with no preferred
interfacial anchoring and an initially homogenous bulk texture; (b) log-log plot of the spherulite (major axis) radius versus time
for the isotropic nematic elastic case; (c) power-law fit of the spherulite (major axis) radius for the isotropic nematic elastic case.
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elasticity of the nematic phase compared with inter-

facial anchoring energy. An important conclusion

from past work on nematic spherulite growth, that

multiple shape-dynamic/self-similar regimes occur

pre/post-shedding of defects (27), which implies that

similar phenomena could occur for smectic-A phase

ordering at length scales computationally unavailable.
In the smectic-A phase, disclination shedding events at

the isotropic/smectic-A interface in conjunction with

bulk texturing, could result in curvature defects such

as focal conic domains observed in smectic-A

batonnets (31).

Figure 6(a)–(c) shows the transient morphology of

the simulation results for the isotropic nematic elastic

case which does confirm that there is no substantial
preferred interfacial anchoring from nematic elasticity

(figure 6(d)):

fNe ¼
1

2
l1ð�QÞ2: ð12Þ

However, the prediction of the Wulf construction (figure

5(a)) is not found to be valid owing to the presence of
texturing in the bulk of the spherulite. An undulation

instability (38) is observed along the centreline of the

spherulite parallel to the layer normal. Figure 6(e)

shows the smectic-A elastic contributions:

fAe ¼
1

2
b1j��j2 þ 1

4
b2j�2�j2

� 1

2
eQ : ð��Þð���Þ ð13Þ

which indicates that this is a bulk phenomenon owing

to the gradient of the smectic order across the body of

the spherulite. As smectic order decreases approaching

the interface with the isotropic phase, both the free

energy penalty for layer dilation decreases (owing to

decreased smectic-A order) and the layer spacing
increases (also owing to decreased smectic-A order,

see Figure 2). The relationship was determined for a

distortion-free smectic-A domain to be (9):

d0 ¼ 2

2eSA � 3b1

3b2

� ��1=2

ð14Þ

where d0 is the smectic-A layer spacing, SA is the

nematic scalar order parameter in the smectic-A

phase. Owing to symmetry, the core region of the

spherulite has maximum smectic order and thus a

minimum layer dilation. This overall bulk layer dila-

tion results in an undulation instability to dissipate
higher-energy layer expansion via low-energy layer

curvature (38).

This layer dilation undulation instability,

referred to as Helfrich-Huralt undulations (38, 39),

has been observed in films of lamellar systems

including smectic-A and cholesteric liquid crystals

under an external layer dilation force (38). Figure 7

shows a representative example of past results for the

currently simulated model system in a two-dimen-
sional thin-film geometry with layer dilation

imposed by perturbing the plate separation distance.

As derived using linearised lamellar elasticity (7),

the optimal wavelength for the undulation

distortion in the thin-film geometry (figure 7) is

approximately (38):

�U ¼ 2

�L




� �1
2

ð15Þ

where � is the characteristic length of the lamellar

ordering (on the order of the layer spacing), and �U

is the characteristic length of the undulation instabil-

ity, and L is the externally imposed length scale.

Numerical simulation results shown in figure 6(e)

and the ideal layer spacing dependence equation (14)

show the source of the layer dilation driving the
instability. Past work studying a quasi-lamellar sys-

tem, the cholesteric mesophase, has shown that cho-

lesteric pitch gradients (similar to the smectic-A layer

spacing) are imposed by the presence of the inter-

face with the isotropic phase for this system as well

(40). These past results along with the current

observations imply that a similar undulation

instability should be seen in growing cholesteric
spherulites, although experimental evidence of this

phenomena has not been observed. This can be

explained based upon comparing magnitudes of �U

and spherulite radii for both cases, using estimates

of their characteristic lengths. For typical smectic-A

liquid crystals, � is of the order of nanometers

which results in �U , R in the self-similar regime.

Thus, an undulation instability is predicted to be
observed in this growth scenario as is confirmed

with the present simulations. For cholesteric liquid

crystals, the characteristic length is of the order of

micrometres, which is also of the order of the max-

imum spherulite size that has been observed experi-

mentally. Thus, �U � L which explains why the

growth-induced undulation instability observed in

the smectic-A system is not observed in the quasi-
lamellar cholesteric liquid crystal.

An additional effect of this texture induced by

the introduction of smectic-A order is that the

spherulite shape deviates from the Wulf construc-

tion prediction of perfectly spherical growth.

Instead, the spherulite has a long axis parallel to

the smectic layers in order to minimise the
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spherulite area with high layer dilation. The time

evolution of the spherulite aspect ratio, shown in

Figure 6(f), shows a convergence to a value slightly

below one resulting from an equilibrium bulk

texture without the presence of frustration from

interfacial anchoring, but instead from the initial

homogeneous texture and order parameter gradi-

ents induced by the presence of the interface.

(a) (b) (c)

(d) (e) (f )

(g)

Figure 6. Simulation results for the isotropic nematic elastic case where the surface corresponds to Re(�) (minimum/maximum
-0.18/0.18 corresponding to black/white) for simulations times: (a) 6.7 �s; (b) 15.0 �s; (c) 21.0�s. (d) Surface plot of the nematic
elastic contribution (see equation (12) minimum/maximum 0.0/2.151 · 104 J m-3, see the colour bar). (e) Surface plot of the
smectic-A elastic contribution (see equation (13), minimum/maximum 0.0/2.151 · 104 J m-3). (f) Aspect ratio of y-/x- spherulite
axes versus time for the isotropic nematic elastic case. (g) Colour bar for (d)–(e).
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For the equal splay-bend nematic case, Equation (11)

shows that the nematic contribution to the interfacial
anchoring prefers a planar orientation to the isotropic

interface (average orientational axis parallel to the inter-

face). This scenario is in agreement with experimental

observations of preferred planar anchoring for the iso-

tropic/smectic-A interface (34). In this case, the Wulf

construction is not adequate in that frustration of the

interfacial anchoring with the bulk texture will result in

deviation from homogeneous bulk ordering. A simple
extension of Wulf’s approach was made by Fournier

and Durand which takes into account finite smectic-A

elasticity (34):

F ¼
Z

A

	dAþ
Z

V

fddV þ �V : ð16Þ

As with the Wulf construction, minimisation of the

total free energy of the spherulite F predicts its shape,
but an additional term is used to describe all possible

discrepancies with respect to the ideal homogeneous

bulk texture:

fdðrÞ ¼ felðrÞ þ �f f ðr�  eqÞg ð17Þ

where fel is the elastic free energy density (curvature/
dilation) and the second term describe melting of smec-

tic-A order owing to defects. Fournier and Durand

determined a semi-quantitative approximate solution

to Equations (16)–(17) which predicts a relaxed config-

uration as shown in Figure 8(a). This solution deter-

mines a spherulite configuration where, to a first

approximation, dilation, curvature and interfacial

anchoring energies are minimised. Non-dilative config-
urations exist which involve complex curvature defects,

or focal conics, in order to minimise the total energy of

the growing spherulite (34). Fournier and Durand deter-

mined a specific spherulite focal conic texture which

results in a total free energy substantially lower than

that predicted by the extended Wulf’s method (34).

This type of approach is limited in that predictions can

be made, but transition mechanisms and alternate dila-
tion-minimum modes are not energetically identified

(a) (b) (c)

Figure 8. (a) Spherulite shape/morphology predicted by Fournier and Durand’s extension to the Wulf construction (based on
(34), figure 6(b)); (b) log–log plot of spherulite (major axis) radius versus time for both cases; (c) power-law fit of spherulite
(major axis) radius versus for both cases.

Figure 7. Past simulation results, using the same material
parameters as used in this work (see figure 3), of undulation
instabilities in a two-dimensional thin-film geometry where
the surface corresponds to Re(�). The horizontal
boundaries correspond to liquid crystal/solid interfaces and
the vertical boundaries are periodic; the length scale of the
domain is approximately 108 nm with an initially imposed
undeformed texture of 25 smectic-A layers (4 nm equilibrium
layer spacing). Adapted from (11).
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from a growth process. Thus, pure geometrical

approaches, or those extended to take into account dila-

tion/curvature elasticity, are not able to take into

account an adequate subset of the physics involved in

these growth processes.

Figure 8(b) and (c) show simulation results of the

long axis and power-law fit versus time for the nematic
equal bend-splay case superimposed on those results

from the nematic elastic isotropy case. The introduc-

tion of anisotropic interfacial tension owing to the

equal bend-splay elasticity (figure 6(d))

fNe ¼
1

2
l1ð�QÞ2 þ 1

2
l2ð��QÞ2 ð18Þ

results in little change in the growth kinetics compared

with the previous case. Figure 9(a)–(c) show the

dynamic morphology of the spherulite which is in
good agreement with the shape prediction of

Fournier and Durand (Figure 8(a)). Again, the undu-

lation instability is present in addition to interfacial

heterogeneity from the preferred planar anchoring.

The additional smectic layer curvature resulting from

the transition from homeotropic to planar anchoring

(molecular axis perpendicular to the interface) at the

spherulite poles also promotes the undulation instability
resulting in an increased amplitude compared with a

spherulite of equal vertical radius in the previous

nematic elastic case.

Figure 9(f) shows that the evolution of the aspect

ratio differs compared with the previous nematic elastic

case, where now the aspect ratio decays as the spherulite

grows from a maximum value following the shape-

dynamic growth regime. While the spherulite shape
morphology and preferred anchoring of the isotropic/

smectic-A interface are in agreement with past theore-

tical and experimental observations, respectively, the

decay of the aspect ratio is not in-line with experimental

observation of high-aspect ratio batonnets. This decay

while in the self-similar growth regime can be explained

based upon a scaling theory derived from studying the

shape and director-field transformation of nematic tac-
toids (41, 42). This approach uses a simplified nematic

spherulite free energy which takes into account both

interfacial energy coupled with bulk elastic anchoring

as a function of the nematic director:

F ¼ �
Z

A

ð1þ !ðq � n Þ2ÞdA

þ 1

2
K

Z
V

ð� � nÞ2 þ ½n · ð� · nÞ�2
� �

dV ð19Þ

where � is interfacial tension, ! is a dimensionless

anchoring strength, q is the surface normal (a function

of position r), n is the nematic director, and K is the

elastic constant (using an equal splay-bend assump-

tion). Assuming a fixed bipolar nematic texture (see

Figure 8(a) where contour lines/smectic layers indicate

the orientation of the vector perpendicular to the

nematic director n) and a fixed spherulite volume V,

a scaling estimate for the aspect ratio of the spherulite

obeys the following relationship to minimise the total
free energy:

R

r
� K3=5��3=5V�1=5 ð20Þ

where R is the major axis and r is the minor axis.

Equation (20) predicts that the spherulite aspect ratio
decreases with volume, as is found for the equal splay-

bend case in Figure 9(f). This implies that as the spher-

ulite radius grows the aspect ratio will converge to one,

assuming no additional shape-dynamic events, which

is not in agreement with observations of complex

batonnet structures in isotropic/smectic-A transitions.

Thus, it is expected that if computational resources

allowed access to larger spherulite length scales,
another shape-dynamics regime would be observed

similar to defect shedding events seen during the

growth of nematic spherulites (27, 28).

5. Conclusions

A study of the two-dimensional growth of an initially

homogeneous smectic-A spherulite in an isotropic

matrix has been performed via modelling and simula-

tion. A mesoscale Landau-de Gennes-type model has

been used that takes into account the coupling

between orientational (nematic) and one-dimensional

translational (smectic-A) order where layer spacing
and the coupling of the nematic director and wave

vector are energetically imposed. Simulations of two

different nematic elasticity conditions corresponding

to isotropic and preferred planar interfacial anchoring

have been performed and compared with past experi-

mental and theoretical studies;

� a growth-induced dilative layer undulation
instability has been observed that is unique to initi-

ally homogeneous smectic-A spherulite growth.

This instability has been shown to be independent

of interfacial anchoring and a result of gradients in

the bulk order.
� the use of nematic equal splay-bend elastic condi-

tions has been shown to be required to adequately

model the preferred planar interfacial anchoring
experimentally observed for the isotropic/smectic-

A interface.
� the use of nematic equal splay-bend elastic condi-

tions was shown to result in a spherulite shape in
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agreement with past theoretical predictions for

both smectic-A spherulites and similarly textured

nematic spherulites.
� an aspect ratio decay of the spherulite has been

observed in the self-similar growth regime, which

implies that a second shape-dynamics regime fol-

lows at greater spherulite radius in order to agree

with experimental observations of smectic-A baton-

nets with high aspect ratios. A defect shedding

shape-dynamics process has been proposed, similar

(a) (b) (c)

(d) (e) (f )

(g)

Figure 9. Simulation results for the equal splay-bend case where the surface corresponds to Re(�) (minimum/maximum -0.18/0.18
corresponding to black/white) for simulations times: (a) 6.4 �s; (b) 13.7 �s; (c) 19.6 �s. (d) Surface plot of the nematic elastic
contribution (see equation (18), minimum/maximum 0.0/2.151 · 104 J m-3, see the colour bar). (e) Surface plot of the smectic-A
elastic contribution (see equation (13), minimum/maximum 0.0/2.151 · 104 J m-3). (f) Aspect ratio of y-/x- spherulite axes versus
time for both simulation cases. (g) Colour bar for (d)–(e).
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to that seen in growing nematic spherulites (27, 28),

to transition the bipolar oriented smectic-A spher-

ulite to one in the diverse set of batonnet structures

composed of focal conic curvature defects.

This and past simulation work (9–12) using the

high-order Landau-de Gennes-type phenomenologi-
cal model of Mukherjee, Pleiner and Brand (7, 8) has

shown great promise for studying both the isotropic/

smectic-A transition and the overall smectic-A meso-

phase. The key aspects of this model, in addition to its

phenomenological nature, are that energetic couplings

are employed between orientational/translational

(nematic/smectic-A) order including: bulk nematic

and smectic-A order (S/ ), average molecular axis
and smectic layer normal (n/a), and bulk nematic/

smectic-A order and layer spacing (S/ /|a|). These

couplings and the use of full tensorial and complex

order parameters capture a sub-set of the fundamental

physics involved in the isotropic/smectic-A transition

that is unavailable using more simplified approaches.

The main limitation, as with most modeling

approaches, lies in the limits imposed computation-
ally. Cutting-edge scientific computing approaches

such as fully adaptive parallelised finite element

libraries (for example, LibMesh (30) and PETSc-

FEM (43)) maximise the impact of currently available

computational resources. Through the use of these

existing numerical approaches, the development of

parallelised post-processing code, and the presently

used high-order model, smectic-A phenomena at
macroscopic lengths scales could be accessed to study

diverse multi-scale growth phenomena such as the

fascinating batonnet structures of Friedel and

Grandjean (31) (see also (32, 33)).
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